Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Clin Lymphoma Myeloma Leuk ; 23(6): 413-419, 2023 06.
Article in English | MEDLINE | ID: covidwho-20243696

ABSTRACT

Given the significance of the immune system and the important role of therapies within the context of the immune system in plasma cell disorders, the International Myeloma Society annual workshop convened a session dedicated to this topic. A panel of experts covered various aspects of immune reconstitution and vaccination. The top oral presentations were highlighted and discussed. This is a report of the proceedings.


Subject(s)
Immune Reconstitution , Multiple Myeloma , Humans , Multiple Myeloma/therapy , Vaccination , Immunotherapy, Adoptive
2.
Leukemia ; 37(6): 1175-1185, 2023 06.
Article in English | MEDLINE | ID: covidwho-2319828

ABSTRACT

In the post-pandemic COVID-19 period, human activities have returned to normal and COVID-19 cases are usually mild. However, patients with multiple myeloma (MM) present an increased risk for breakthrough infections and severe COVID-19 outcomes, including hospitalization and death. The European Myeloma Network has provided an expert consensus to guide patient management in this era. Vaccination with variant-specific booster vaccines, such as the bivalent vaccine for the ancestral Wuhan strain and the Omicron BA.4/5 strains, is essential as novel strains emerge and become dominant in the community. Boosters should be administered every 6-12 months after the last vaccine shot or documented COVID-19 infection (hybrid immunity). Booster shots seem to overcome the negative effect of anti-CD38 monoclonal antibodies on humoral responses; however, anti-BCMA treatment remains an adverse predictive factor for humoral immune response. Evaluation of the immune response after vaccination may identify a particularly vulnerable subset of patients who may need additional boosters, prophylactic therapies and prevention measures. Pre-exposure prophylaxis with tixagevimab/cilgavimab is not effective against the new dominant variants and thus is no longer recommended. Oral antivirals (nirmatrelvir/ritonavir and molnupiravir) and remdesivir are effective against Omicron subvariants BA.2.12.1, BA.4, BA.5, BQ.1.1 and/or XBB.1.5 and should be administered in MM patients at the time of a positive COVID-19 test or within 5 days post symptoms onset. Convalescent plasma seems to have low value in the post-pandemic era. Prevention measures during SARS-CoV-2 outbreaks, including mask wearing and avoiding crowded places, seem prudent to continue for MM patients.


Subject(s)
COVID-19 , Multiple Myeloma , Humans , COVID-19/epidemiology , Multiple Myeloma/therapy , SARS-CoV-2 , COVID-19 Serotherapy , Consensus , Pandemics , Antibodies, Neutralizing
3.
Cancers (Basel) ; 15(8)2023 Apr 12.
Article in English | MEDLINE | ID: covidwho-2298833

ABSTRACT

The exclusion of patients with cancer in clinical trials evaluating COVID-19 vaccine efficacy and safety, in combination with the high rate of severe infections, highlights the need for optimizing vaccination strategies. The aim of this study was to perform a systematic review and meta-analysis of the published available data from prospective and retrospective cohort studies that included patients with either solid or hematological malignancies according to the PRISMA Guidelines. A literature search was performed in the following databases: Medline (Pubmed), Scopus, Clinicaltrials.gov, EMBASE, CENTRAL and Google Scholar. Overall, 70 studies were included for the first and second vaccine dose and 60 studies for the third dose. The Effect Size (ES) of the seroconversion rate after the first dose was 0.41 (95%CI: 0.33-0.50) for hematological malignancies and 0.56 (95%CI: 0.47-0.64) for solid tumors. The seroconversion rates after the second dose were 0.62 (95%CI: 0.57-0.67) for hematological malignancies and 0.88 (95%CI: 0.82-0.93) for solid tumors. After the third dose, the ES for seroconversion was estimated at 0.63 (95%CI: 0.54-0.72) for hematological cancer and 0.88 (95%CI: 0.75-0.97) for solid tumors. A subgroup analysis was performed to evaluate potential factors affecting immune response. Production of anti-SARS-CoV-2 antibodies was found to be more affected in patients with hematological malignancies, which was attributed to the type of malignancy and treatment with monoclonal antibodies according to the subgroup analyses. Overall, this study highlights that patients with cancer present suboptimal humoral responses after COVID-19 vaccination. Several factors including timing of vaccination in relevance with active therapy, type of therapy, and type of cancer should be considered throughout the immunization process.

5.
Viruses ; 15(3)2023 03 08.
Article in English | MEDLINE | ID: covidwho-2282298

ABSTRACT

In patients with multiple myeloma (MM), SARS-CoV-2 infection has been associated with a severe clinical course and high mortality rates due to the concomitant disease- and treatment-related immunosuppression. Specific antiviral treatment involves viral replication control with monoclonal antibodies and antivirals, including molnupiravir and the ritonavir-boosted nirmatrelvir. This prospective study investigated the effect of these two agents on SARS-CoV-2 infection severity and mortality in patients with MM. Patients received either ritonavir-nirmatrelvir or molnupiravir. Baseline demographic and clinical characteristics, as well as levels of neutralizing antibodies (NAbs), were compared. A total of 139 patients was treated with ritonavir-nirmatrelvir while the remaining 30 patients were treated with molnupiravir. In total, 149 patients (88.2%) had a mild infection, 15 (8.9%) had a moderate infection, and five (3%) had severe COVID-19. No differences in the severity of COVID-19-related outcomes were observed between the two antivirals. Patients with severe disease had lower neutralizing antibody levels before the COVID-19 infection compared to patients with mild disease (p = 0.04). Regarding treatment, it was observed that patients receiving belantamab mafodotin had a higher risk of severe COVID-19 (p < 0.001) in the univariate analysis. In conclusion, ritonavir-nirmatrelvir and molnupiravirmay prevent severe disease in MM patients with SARS-CoV-2 infection. This prospective study indicated the comparable effects of the two treatment options, providing an insight for further research in preventing severe COVID-19 in patients with hematologic malignancies.


Subject(s)
COVID-19 , Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Antiviral Agents/therapeutic use , Prospective Studies , Ritonavir/therapeutic use , COVID-19 Drug Treatment , SARS-CoV-2 , Antibodies, Neutralizing
6.
Hormones (Athens) ; 2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2275747

ABSTRACT

AIM: To compare the kinetics of neutralizing antibodies (NΑbs) against SARS-CoV-2 after vaccination with the BNT162b2 mRNA vaccine (Comirnaty, Pfizer/BioNTech) between patients with T2DM and healthy controls. METHODS: NAb levels after the BNT162b2 mRNA vaccine were compared between 50 patients with non-insulin treated T2DM and 50 age-, gender-, and BMI-matched healthy controls up to 3 months after the second dose. The median age of both groups was 70 years. RESULTS: On day 1, mean NAbs of the control and T2DM groups were 14.64% (standard error, SE = 2.30) and 14.04% (SE = 2.14), respectively (p value = 0.926). Three weeks later, the mean NAb values were 39.98% (SE = 3.53) in the control group and 40.97% (SE = 3.99) in participants with T2DM (p value = 0.698). One month after the second vaccination, mean NAb values increased to 87.13% (SE = 2.94) in the control group and 89.00% (SE = 2.18) in the T2DM group. Three months after the second vaccine dose, the mean inhibitory titers decreased to 83.49% (SE = 3.82) (control group) and 76.36% (SE = 3.33) (T2DM group). On all occasions, no significant difference was found between the two groups (all p values > 0.05). CONCLUSIONS: Patients with T2DM present similar immunological response to COVID-19 BNT162b2 mRNA vaccine to that of healthy subjects.

8.
Viruses ; 15(3)2023 03 16.
Article in English | MEDLINE | ID: covidwho-2259168

ABSTRACT

Background: While passive immunotherapy has been considered beneficial for patients with severe respiratory viral infections, the treatment of COVID-19 cases with convalescent plasma produced mixed results. Thus, there is a lack of certainty and consensus regarding its effectiveness. This meta-analysis aims to assess the role of convalescent plasma treatment on the clinical outcomes of COVID-19 patients enrolled in randomized controlled trials (RCTs). Methods: A systematic search was conducted in the PubMed database (end-of-search: 29 December 2022) for RCTs on convalescent plasma therapy compared to supportive care\standard of care. Pooled relative risk (RR) and 95% confidence intervals were calculated with random-effects models. Subgroup and meta-regression analyses were also performed, in order to address heterogeneity and examine any potential association between the factors that varied, and the outcomes reported. The present meta-analysis was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Results: A total of 34 studies were included in the meta-analysis. Per overall analysis, convalescent plasma treatment was not associated with lower 28-day mortality [RR = 0.98, 95% CI (0.91, 1.06)] or improved 28-day secondary outcomes, such as hospital discharge [RR = 1.00, 95% CI (0.97, 1.03)], ICU-related or score-related outcomes, with effect estimates of RR = 1.00, 95% CI (0.98, 1.05) and RR = 1.06, 95% CI (0.95, 1.17), respectively. However, COVID-19 outpatients treated with convalescent plasma had a 26% less risk of requiring hospital care, when compared to those treated with the standard of care [RR = 0.74, 95% CI (0.56, 0.99)]. Regarding subgroup analyses, COVID-19 patients treated with convalescent plasma had an 8% lower risk of ICU-related disease progression when compared to those treated with the standard of care (with or without placebo or standard plasma infusions) [RR = 0.92, 95% CI (0.85, 0.99)] based on reported outcomes from RCTs carried out in Europe. Finally, convalescent plasma treatment was not associated with improved survival or clinical outcomes in the 14-day subgroup analyses. Conclusions: Outpatients with COVID-19 treated with convalescent plasma had a statistically significantly lower risk of requiring hospital care when compared to those treated with placebo or the standard of care. However, convalescent plasma treatment was not statistically associated with prolonged survival or improved clinical outcomes when compared to placebo or the standard of care, per overall analysis in hospitalized populations. This hints at potential benefits, when used early, to prevent progression to severe disease. Finally, convalescent plasma was significantly associated with better ICU-related outcomes in trials carried out in Europe. Well-designed prospective studies could clarify its potential benefit for specific subpopulations in the post-pandemic era.


Subject(s)
COVID-19 , Humans , COVID-19/therapy , COVID-19/etiology , COVID-19 Serotherapy , Randomized Controlled Trials as Topic , Immunization, Passive/methods , Pandemics
9.
Eur J Intern Med ; 2022 Nov 10.
Article in English | MEDLINE | ID: covidwho-2238515

ABSTRACT

In the COVID-19 pandemic era, antibody testing against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has proven an invaluable tool and herein we highlight some of the most useful clinical and/or epidemiological applications of humoral immune responses recording. Anti-spike circulating IgGs and SARS-CoV-2 neutralizing antibodies can serve as predictors of disease progression or disease prevention, whereas anti-nucleocapsid antibodies can help distinguishing infection from vaccination. Also, in the era of immunotherapies we address the validity of anti-SARS-CoV-2 antibody monitoring post-infection and/or vaccination following therapies with the popular anti-CD20 monoclonals, as well as in the context of various cancers or autoimmune conditions such as rheumatoid arthritis and multiple sclerosis. Additional crucial applications include population immunosurveillance, either at the general population or at specific communities such as health workers. Finally, we discuss how testing of antibodies in cerebrospinal fluid can inform us on the neurological complications that often accompany COVID-19.

11.
Hemasphere ; 6(8): e764, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-2190902

ABSTRACT

COVID-19 vaccination leads to a less intense humoral response in patients with multiple myeloma (MM) compared with healthy individuals, whereas the SARS-CoV-2-specific immunity fades over time. The purpose of this study was to explore the kinetics of SARS-CoV-2 neutralizing antibodies (NAbs) in patients with MM after vaccination with the BNT162b2 mRNA vaccine, focusing on their response before (B4D) and at 1 month after the fourth vaccination (M1P4D). Overall, 201 patients with a median age of 67 years were included, whereas 114 (56.7%) were men. The median NAbs levels B4D were 80.0% (±3.5%) and at M1P4D they increased to a median value of 96.1% (±3.7%). The NAb values at M1P4D were similar to those at 1 month post the third dose and superior to all previous timepoints. At M1P4D, the NAbs levels of all the treatment groups increased, apart from the anti-BCMA group. A significant increase in median NAbs values was observed for those receiving CD38-based treatment (n = 43, from 71.0% B4D to 96.0% at M1P4D) and those who did not receive CD38- or BCMA-targeted therapy (n = 137, from 89.6% B4D to 96.3% at M1P4D). Regarding the patients under BCMA-based therapy (n = 21), there was no remarkable increase in NAbs values following the second booster shot (from 3.0% B4D to 4.0% at M1P4D). In conclusion, booster vaccination with the BNT162b2 results in a substantially improved humoral response against SARS-CoV-2 in patients with MM. Anti-BCMA treatment remains an adverse predictive factor for NAbs response; thus, tailored prevention measures should be considered for this patient subgroup.

12.
Clin Immunol ; 246: 109218, 2023 01.
Article in English | MEDLINE | ID: covidwho-2165169

ABSTRACT

We aimed to develop a prediction model for intensive care unit (ICU) hospitalization of Coronavirus disease-19 (COVID-19) patients using artificial neural networks (ANN). We assessed 25 laboratory parameters at first from 248 consecutive adult COVID-19 patients for database creation, training, and development of ANN models. We developed a new alpha-index to assess association of each parameter with outcome. We used 166 records for training of computational simulations (training), 41 for documentation of computational simulations (validation), and 41 for reliability check of computational simulations (testing). The first five laboratory indices ranked by importance were Neutrophil-to-lymphocyte ratio, Lactate Dehydrogenase, Fibrinogen, Albumin, and D-Dimers. The best ANN based on these indices achieved accuracy 95.97%, precision 90.63%, sensitivity 93.55%. and F1-score 92.06%, verified in the validation cohort. Our preliminary findings reveal for the first time an ANN to predict ICU hospitalization accurately and early, using only 5 easily accessible laboratory indices.


Subject(s)
COVID-19 , Adult , Humans , Artificial Intelligence , Reproducibility of Results , Neural Networks, Computer , Intensive Care Units
13.
Cancers (Basel) ; 14(23)2022 Nov 25.
Article in English | MEDLINE | ID: covidwho-2123527

ABSTRACT

Patients with symptomatic monoclonal gammopathies have impaired humoral responses to COVID-19 vaccination. Their ability to recognize SARS-CoV-2 Omicron variants is of concern. We compared the response to BNT162b2 mRNA vaccinations of patients with multiple myeloma (MM, n = 60) or Waldenstrom's macroglobulinemia (WM, n = 20) with healthy vaccine recipients (n = 37). Patient cohorts on active therapy affecting B cell development had impaired binding and neutralizing antibody (NAb) response rate and magnitude, including several patients lacking responses, even after a 3rd vaccine dose, whereas non-B cell depleting therapies had a lesser effect. In contrast, MM and WM cohorts off-therapy showed increased NAb with a broad response range. ELISA Spike-Receptor Binding Domain (RBD) Ab titers in healthy vaccine recipients and patient cohorts were good predictors of the ability to neutralize not only the original WA1 but also the most divergent Omicron variants BA.4/5. Compared to WA1, significantly lower NAb responses to BA.4/5 were found in all patient cohorts on-therapy. In contrast, the MM and WM cohorts off-therapy showed a higher probability to neutralize BA.4/5 after the 3rd vaccination. Overall, the boost in NAb after the 3rd dose suggests that repeat vaccination of MM and WM patients is beneficial even under active therapy.

19.
Vaccines (Basel) ; 10(9)2022 Sep 05.
Article in English | MEDLINE | ID: covidwho-2010346

ABSTRACT

The administration of a third dose of a vaccine against SARS-CoV-2 has increased protection against disease transmission and severity. However, the kinetics of neutralizing antibodies against the virus has been poorly studied in cancer patients under targeted therapies. Baseline characteristics and levels of neutralizing antibodies at specific timepoints after vaccination were compared between patients suffering from breast, ovarian or prostate cancer and healthy individuals. Breast cancer patients were treated with cyclin D kinase 4/6 inhibitors and hormonal therapy, ovarian cancer patients were treated with poly (ADP-ribose) polymerase inhibitors and prostate cancer patients were treated with an androgen receptor targeted agent. Levels of neutralizing antibodies were significantly lower in cancer patients compared to healthy individuals at all timepoints. Antibodies' titers declined over time in both groups but remained above protective levels (>50%) at 6 months after the administration of the second dose. The administration of a third dose increased neutralizing antibodies' levels in both groups. The titers of protective against SARS-CoV-2 antibodies wane over time and increase after a third dose in cancer patients under treatment.

20.
Front Immunol ; 13: 899972, 2022.
Article in English | MEDLINE | ID: covidwho-1963472

ABSTRACT

Immunocompromised individuals including patients with hematological malignancies constitute a population at high risk of developing severe disease upon SARS-CoV-2 infection. Protection afforded by vaccination is frequently low and the biology leading to altered vaccine efficacy is not fully understood. A patient cohort who had received bone marrow transplantation or CAR-T cells was studied following a 2-dose BNT162b2 mRNA vaccination and compared to healthy vaccine recipients. Anti-Spike antibody and systemic innate responses were compared in the two vaccine cohorts. The patients had significantly lower SARS-CoV-2 Spike antibodies to the Wuhan strain, with proportional lower cross-recognition of Beta, Delta, and Omicron Spike-RBD proteins. Both cohorts neutralized the wildtype WA1 and Delta but not Omicron. Vaccination elicited an innate cytokine signature featuring IFN-γ, IL-15 and IP-10/CXCL10, but most patients showed a diminished systemic cytokine response. In patients who failed to develop antibodies, the innate systemic response was dominated by IL-8 and MIP-1α with significant attenuation in the IFN-γ, IL-15 and IP-10/CXCL10 signature response. Changes in IFN-γ and IP-10/CXCL10 at priming vaccination and IFN-γ, IL-15, IL-7 and IL-10 upon booster vaccination correlated with the Spike antibody magnitude and were predictive of successful antibody development. Overall, the patients showed heterogeneous adaptive and innate responses with lower humoral and reduced innate cytokine responses to vaccination compared to naïve vaccine recipients. The pattern of responses described offer novel prognostic approaches for potentiating the effectiveness of COVID-19 vaccination in transplant patients with hematological malignancies.


Subject(s)
COVID-19 , Hematologic Neoplasms , Viral Vaccines , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Chemokine CXCL10 , Cytokines , Hematologic Neoplasms/therapy , Humans , Interleukin-15 , RNA, Messenger , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL